Exercise 19

For the following exercises, find the domain, range, and all zeros/intercepts, if any, of the functions.

$$
g(x)=\frac{3}{x-4}
$$

Solution

The domain is the set of all x where the denominator is not zero.

$$
\begin{gathered}
x-4 \neq 0 \\
x \neq 4
\end{gathered}
$$

Therefore, the domain is $\{x \mid x \neq 4\}$. There's a vertical asymptote at $x=4 . f(x)$ is continuous for $x \neq 4$, so it takes on all values between

$$
\begin{aligned}
g(4.0001) & =\frac{3}{4.0001-4} \approx 30000 \\
g(1000) & =\frac{3}{1000-4} \approx 0.003
\end{aligned}
$$

and all values between

$$
\begin{aligned}
& g(3.9999)=\frac{3}{-3.9999-4} \approx-30000 \\
& g(-1000)=\frac{3}{-1000-4} \approx-0.003
\end{aligned}
$$

Putting in values of x even closer to 4 yields even higher values, and putting in values of x larger than 1000 yields a number even closer to zero. Therefore, the range is $\{y \mid y \neq 0\}$. Plug in $x=0$ to the function: $g(0)=-3 / 4$. The y-intercept is then $(0,-3 / 4)$. Below is a graph of $g(x)$ versus x to confirm these results.

